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We consider bond percolation on Zd at the critical occupation density pc for
d > 6 in two different models. The first is the nearest-neighbor model in dimen-
sion d ± 6. The second model is a ‘‘spread-out’’ model having long range
parameterized by L in dimension d > 6. In the spread-out case, we show that the
cluster of the origin conditioned to contain the site x weakly converges to an
infinite cluster as |x| Q . when d > 6 and L is sufficiently large. We also give a
general criterion for this convergence to hold, which is satisfied in the case
d ± 6 in the nearest-neighbor model by work of Hara. (12) We further give a
second construction, by taking p < pc, defining a measure Qp and taking its
limit as p q p−

c . The limiting object is the high-dimensional analogue of Kesten’s
incipient infinite cluster (IIC) in d=2. We also investigate properties of the IIC
such as bounds on the growth rate of the cluster that show its four-dimensional
nature. The proofs of both the existence and of the claimed properties of the IIC
use the lace expansion. Finally, we give heuristics connecting the incipient infi-
nite cluster to invasion percolation, and use this connection to support the well-
known conjecture that for d > 6 the probability for invasion percolation to
reach a site x is asymptotic to c |x|−(d − 4) as |x| Q ..

KEY WORDS: Percolation; lace expansion; critical phenomena; incipient infi-
nite cluster.

1. INTRODUCTION AND RESULTS

1.1. History

For percolation models in any dimension d \ 2, it is a well-known and
partially confirmed conjecture that there is no infinite cluster at the critical



point. On the other hand, for critical percolation restricted to a large box
of radius n, one can find several ‘macroscopic’ clusters whose diameter is of
order n. These large but sparse critical clusters, sometimes referred to as
‘‘incipient infinite clusters,’’ have a fractal dimension df < d. The validity
of this picture is rigorously confirmed to a large extent by ref. 8, whose
main assumptions hold for d=2 and are expected to hold when d [ 6, and
by ref. 2 in d > 6 whose main assumption is proved in ref. 12 for the
nearest-neighbor model and d sufficiently large, and in ref. 13 for a suffi-
ciently ‘‘spread-out’’ model. (The term spread-out is explained in Sec-
tion 1.2 below.)

Motivated by work in the physics literature, including the study of
random walk on critical percolation clusters, Kesten (23) proposed to con-
sider the following object. Condition the cluster of the origin in critical
percolation to intersect the boundary of the box with radius n centered at
the origin, and let n Q .. It is intuitively clear that in the weak limit an
infinite cluster is obtained. Due to the absence of an infinite cluster at the
critical point, the existence of the limit is not obvious. Kesten showed that
in d=2 the conditional distributions mentioned above do converge in the
weak sense. He also showed that an alternative way of obtaining the limit
is by taking p > pc, conditioning on the cluster of the origin to be infinite,
and letting p s p+

c . For brevity we refer to the infinite cluster obtained in
this limit as the IIC.

In ref. 24, the IIC served as a natural setting to study the asymptotic
behavior of random walk on a critical percolation cluster. In addition, the
IIC seems to be the unique object describing the ‘‘microscopic view’’ of
large critical clusters. (2) This is supported by the fact that natural proce-
dures, different from the ones given by Kesten, also lead to the IIC.
Namely, spanning clusters, the largest cluster in a finite box and the
Chayes–Chayes–Durrett cluster, when viewed from a randomly picked site,
all look asymptotically like the IIC. (20) Additional motivation to study the
IIC comes from its close relationship with invasion percolation, a model we
will introduce later on.

Lacking a general existence theorem for the IIC, its construction so far
is limited to situations that are well understood. In particular, a construc-
tion exists only in cases where the absence of percolation at the critical
point is rigorously known. So far, proofs of the latter are restricted to (a)
d=2 (refs. 21, 22, Theorem 3.1, and 32), (b) high dimensions, that is
d \ 19 or d > 6 in a sufficiently ‘‘spread-out’’ model, (14) and (c) oriented
percolation. (7)

Recently, van der Hofstad, den Hollander, and Slade (17) gave a con-
struction of the IIC for so-called ‘‘spread-out’’ oriented percolation in
dimensions d+1 > 4+1.
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In this paper, we construct the IIC for unoriented nearest-neighbor
percolation in dimension d ± 6, and for sufficiently spread-out percolation
in dimensions d > 6. The latter model is believed to be in the same univer-
sality class as the nearest-neighbor model. Let Px denote the law of the cri-
tical configuration conditioned to contain a connection from 0 to x. We
show that Px converges weakly to a measure P. as |x| Q .. Note that it is
part of the statement that the limit does not depend on the direction or
manner in which |x| Q .. We will comment on this later. We give an
equivalent definition, where we first take p < pc, define a measure Qp and
take its limit as p q p−

c . This type of construction using subcritical
approach to pc is new. In view of the mentioned robustness, we expect both
of our definitions to be equivalent to Kesten’s.

We establish some geometric properties of the IIC measure P.. We
obtain bounds on the IIC two-point function, showing that P.(0 Y y) is of
order |y|−(d − 4). This shows that the IIC is four-dimensional, as was
conjectured by physicists, (1, 3) and as is expected in view of the results of
Aizenman (2) and Hara and Slade. (16) We also study the backbone of the
IIC, which is defined as the set of sites from which there are disjoint con-
nections to the origin and to infinity. We show that the backbone is two-
dimensional, and that apart from small loops, it is a single path.

Our proofs are based on a modification of the Hara–Slade expansion for
percolation.(14) Several variants of the lace expansion(9) have been used to
analyze percolation and related models. In particular, the fact that the critical
two-point function, Pcr(0 Y x), is asymptotic to c |x|−(d −2) as |x| Q . has been
shown by these methods.(13) In analyzing the modified expansion, we heavily
use this theorem as well as its analogue for the nearest-neighbor case.(12)

1.2. Main Results

For general background on percolation, see ref. 11. Our models are
defined in terms of a probability distribution D: Zd

Q [0, 1]. Let p ¥

[0, ||D||−1
. ] be a parameter, where || · ||. denotes the supremum norm, so

that pD(x) [ 1 for all x. We declare a bond {u, v} to be occupied with
probability pD(v − u) and vacant with probability 1 − pD(v − u). The occu-
pation status of all bonds are independent random variables. For the
nearest-neighbor model, we take D(x)=1/(2d) for all x with |x|=1, so
that each bond is occupied with probability p/(2d). A simple example of
the spread-out model is

D(x)=˛ 1
(2L+1)d − 1

for 0 < ||x||. [ L

0 otherwise,

(1.1)
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for which bonds are of the form {u, v} with 0 < ||u − v||. [ L, and bonds are
occupied with probability p/[(2L+1)d − 1]. Note that p is not a probabil-
ity but rather equals the expected number of occupied bonds per vertex.
We will always work at the percolation threshold p=pc, which in this
parametrization tends to 1, as either d Q . or L Q . (see refs. 15 and 13).

In the spread-out case, our results hold for any function D that obeys
the assumptions given in ref. 13, Definition 1.1. These assumptions involve
a parameter L, which serves to spread out the connections, and which will
be taken large. In particular, they require that D(x) [ CL−d for all x, and,
with s defined by

s2= C
x ¥ Z

d
|x|2 D(x), (1.2)

that c1L [ s [ c2L. Here | · | denotes the Euclidean norm on Rd. Finally, it
is assumed that D(x)=0 if ||x||. > L. The full details of the assumptions
can be found in ref. 13. The function in (1.1) does obey the assumptions.

The law of the configuration of occupied bonds (at the critical perco-
lation threshold) is denoted by P with corresponding expectation denoted
by E. Given a configuration we say that x is connected to y, and write
x Y y, if there is a path of occupied bonds from x to y (or if x=y). We let
C(x) denote the occupied cluster containing x. We may think of C(x)
either as a set of sites or as a set of occupied bonds.

Let F denote the s-algebra of events. A cylinder event is an event
given by conditions on the states of finitely many bonds only. We denote
the algebra of cylinder events by F0. We define

Px(F)=P(F | 0 Y x)=
1

y(x)
P(F, 0 Y x), F ¥ F, (1.3)

where y(x)=P(0 Y x). We prove the following theorem.

Theorem 1.1. Let d > 6 and p=pc. There is an L0=L0(d) such
that for L \ L0 in the spread-out model, the limit

P.(F)= lim
|x| Q .

Px(F) (1.4)

exists for any cylinder event F. Also, P. extends uniquely from F0 to a
probability measure on F.

The reason why the limit does not depend on how |x| Q . is roughly
the following. The cylinder F depends on a finite set W. The lace expan-
sion is adapted to the event P(F, 0 Y x) in such a way that only the part of
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the connection from 0 to x outside W is expanded. This writes P(F, 0 Y x)
as a convolution ;y Y(y; F) y(x − y), where the function Y(y; F) is abso-
lutely summable, plus a smaller order term. The main contribution to the
sum comes from y near W, and y(x − y) is cancelled by y(x) in (1.3). This
also leads to the formula P.(F)=;y Y(y; F).

To state our subcritical definition, for p < pc we define

Qp(F)=
1

q(p)
C

x ¥ Z
d

Pp(F, 0 Y x), F ¥ F, (1.5)

where q(p)=;x yp(x)=Ep |C(0)| is the susceptibility. We prove the
following theorem.

Theorem 1.2. Let d > 6. Under the hypotheses of Theorem 1.1, or
alternatively, for nearest-neighbor percolation in sufficiently high dimen-
sions, the limit

Qpc
(F)=lim

p ‘ pc

Qp(F) (1.6)

exists for any cylinder event F. Moreover, Qpc
=P..

Not surprisingly, the proof of Theorem 1.1 relies on the asymptotic
behavior of y(x) for |x| large. By ref. 13, Theorem 1.2 there is an
L0=L0(d) such that for L \ L0 there is a constant c depending on d and L
such that

y(x)=
c

|x|d − 2 (1+o(1)), as |x| Q .. (1.7)

We use the lace expansion and (1.7) to prove that the limit in (1.4) exists.
In controlling the expansion we also need (1.8) below, which is a conse-
quence of ref. 13, Proposition 2.2. Let ỹ(x)=pc(D f y)(x), where, for
functions f, g: Zd

Q R, (f f g)(x)=;y ¥ Z
d f(y) g(x − y) denotes the con-

volution of f and g, whenever the sum defining it converges absolutely.
For d > 6, a > 0, and L sufficiently large, depending on d and a, we have

y(x) [
C

(|x|+1)d − 2 , ỹ(x) [
Cb

(|x|+1)d − 2 , (1.8)

where b=L−2+a, and C depends only on d and a. Here b provides the
small parameter that ensures convergence of the expansion. We will fix an
arbitrary, small value of a to apply (1.8).
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Theorems 1.1–1.2 are similar to the existence statement of the IIC for
spread-out oriented percolation above 4+1 dimensions in ref. 17, which we
now describe in some detail. Fix D satisfying the above assumptions.
Spread-out oriented percolation has vertices Zd × Z+ and directed bonds
((x, n), (y, n+1)), for n \ 0 and x, y ¥ Zd. Similarly to unoriented perco-
lation, a bond ((u, n), (v, n+1)) is occupied with probability pD(v − u) and
vacant with probability 1 − pD(v − u).

Define

Pn(E)=
1
yn

C
x ¥ Z

d
P(E 5 {(0, 0) Q (x, n)}) (E ¥ F0), (1.9)

where yn=;x ¥ Z
d yn(x) with yn(x)=P((0, 0) Q (x, n)), and

P.(E)= lim
n Q .

Pn(E) (E ¥ F0). (1.10)

The main result in ref. 17 is the proof that the limit in (1.10) exists.
Furthermore, under some assumptions, it was shown to be equivalent to a
second, perhaps more natural, construction. Define

Qn(E)=P(E | (0, 0) Q n), Q.(E)= lim
n Q .

Qn(E) (E ¥ F0), (1.11)

where {(0, 0) Q n}={(0, 0) Q (x, n) for some x ¥ Zd} is the survival event.
It was shown that if there exists a constant 0 < B < . such that
P((0, 0) Q n)=(Bn)−1 [1+o(1)], then the limit in (1.11) exists, and
Q.=P..

In ref. 17, it was also conjectured that for fixed x ¥ Zd, the measure
P (x)

n defined by

P (x)
n (E)=

1
yn(x)

P(E 5 {(0, 0) Q (x, n)}) (1.12)

converges to the IIC measure P.. Proving this conjecture seems difficult,
since we do not have a local central limit theorem describing the asympto-
tic behavior of yn(x) available. The definition of the IIC measure for
unoriented percolation in (1.4) is closest in spirit to the definition in (1.12).
Finally, the definition of the IIC in (1.6) can be generalized to oriented
percolation, and converges as well to the same limit P.. In fact, the proof
in Section 4.3 applies to oriented percolation as well, using the results in
refs. 29 and 30. See the end of Section 4.3.

We now state some further remarks to Theorems 1.1–1.2.
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Remark. (1) Later we formulate a more general version of
Theorem 1.1 under some assumptions (see Theorem 4.1 below). The
assumptions hold for nearest-neighbor percolation when d > d0, for some
d0 ± 6 by ref. 12. Since the assumptions involve quantities that arise in the
lace expansion, we defer the statement of the theorem until the expansion is
introduced.

(2) Theorem 1.1 can be viewed as the d > 6 analogue of Kesten’s
result. We note that it is not hard to adapt the proof of ref. 23, Theorem 3
to show that in d=2 the limit in (1.4) coincides with Kesten’s IIC measure.
We expect this equivalence to hold in our case as well, however, condition-
ing on a connection to a point rather than to a box seems to be better
suited for the lace expansion.

We need a few definitions in order to state the properties of P.. We
say that the events {x1 Y y1} and {x2 Y y2} occur disjointly, if there exist
bond disjoint occupied paths connecting x1 to y1 and x2 to y2. An infinite
connected set of bonds has a single end, if any two infinite paths that
remain inside the set have infinitely many points in common.

Theorem 1.3. Let d > 6. There is L0(d), such that for L \ L0 the
measure P. has the following properties.

(i) P.(|C(0)|=.)=1.

(ii) The cluster C(0) has a single end P.-a.s.

(iii) There are positive constants c1=c1(d, L) and c2=c2(d, L) such
that for |y| \ 1

c1

|y|d − 4 [ P.(0 Y y) [
c2

|y|d − 4 . (1.13)

(iv) There are positive constants c3=c3(d, L) and c4=c4(d, L) such
that for |y| \ 1

c3

|y|d − 2 [ P.(0 Y y and y Y . disjointly) [
c4

|y|d − 2 . (1.14)

Remark. (1) Statements (i) and (ii) also hold in two dimensions,
and in fact, should be valid in all dimensions. Statements (iii) and (iv) are
only expected when d > 6. When d=2, by ref. 23, Theorem 8 and ref. 25,
on the triangular lattice,

P.(0 Y y)=|y|−5/48+o(1) as |y| Q .. (1.15)
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In addition, by ref. 23, Theorem 14 and ref. 25

P.(0 Y y and y Y . disjointly)=|y|−l+o(1), as |y| Q ., (1.16)

where l is the so-called ‘‘monochromatic 2-arm exponent,’’ whose exact
value is not known.

(2) We expect that the probabilities in (1.13) and (1.14) are in fact
asymptotic to c |y|−(d − 4) and c |y|−(d − 2), respectively, when |y| Q ..

(3) Statement (iii) is reminiscent of the notion of stochastic dimen-
sion introduced in ref. 6, although our setting is different due to the lack of
translation invariance of the IIC.

(4) In ref. 17, there is also a version of the fact that the IIC for
oriented percolation above 4+1 dimensions has dimension 4.

1.3. Conjectures

In this section, we formulate some conjectures concerning the IIC.
We conjecture that we can alternatively obtain the IIC measure P. by

conditioning on the event {0 Y “B(n)} that the origin is connected to the
boundary of the cube of width n. It is expected (see ref. 11, Section 9.1)
that P(0 Y “B(n)) £ n−2 when d > 6, where £ denotes that the left side is
bounded above and below by multiples of the right side. Without a rigor-
ous proof of such asymptotics, however, it seems difficult to prove the
conjecture. Finally, we also expect that we can obtain P. by taking p > pc,
conditioning on 0 Q . and letting p s pc.

As indicated in Section 1.1, one reason to study the IIC is to be able to
investigate random walk on infinite critical clusters. An old conjecture by
physicists (31) predicts that when d > 6, random walk on a critical percola-
tion cluster reaches a Euclidean distance of order n1/6 in n steps. Below we
explain how Theorem 1.3 supports this conjecture. See Barlow (4) for results
on random walks on supercritical infinite percolation clusters.

Heuristically, in d > 6 the IIC is akin to the family tree of a critical
branching process conditioned to survive. The backbone of the IIC is
analogous to the unique infinite line of descent, and for the purposes of
understanding the random walk, we will think of the backbone as a single
path embedded into Zd as a random walk path. Theorem 1.3 (iv) and its
proof support this heuristic. Consider now simple random walk on the
family tree of a critical branching process (conditioned to survive), with
the root as starting point. The analysis in ref. 24 shows that one can study
the walk by controlling the times between successive returns to the infinite
line of descent, and we expect that on the IIC return times to the backbone
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would behave similarly. In the branching process case, the distance of the
walker from the root after n steps is of order n1/3. Taking into account that
distances are reduced by a square-root due to the embedding into Zd, this
suggests that the typical displacement of random walk on the IIC after n
steps is of order n1/6.

Next we introduce the model for invasion percolation. For simplicity,
we only define the model for a uniform step distribution D, such as the
nearest-neighbor case or the case in (1.1). The bonds in these models are
B={b=(u, v) : D(u − v) > 0}. We let {w(b)}b ¥ B be a collection of i.i.d.
uniform random variables. Given a random configuration w, we define a
random increasing sequence of subgraphs G0, G1,... as follows. We let G0 be
the graph with no edges, and the single vertex 0. We let Gi+1=Gi 2 {bi+1},
where the edge bi+1 is obtained by taking the b ¨ Gi with minimal w(b) and
such that b has an end vertex in Gi. The invaded region is S=1.

i=0 Gi.
It is well known that the asymptotic behavior of invasion percolation

is closely related to the incipient cluster. The heuristic behind this is that
lim supi Q . w(bi)=pc, which is the critical percolation threshold in the
model. (10) In other words, asymptotically the invasion process only accepts
values from critical clusters. As mentioned earlier, critical clusters in d > 6
are four-dimensional, which leads to the well-known conjecture (28) that P(y
is invaded) £ |y|−(d − 4) when d > 6. Our results give non-rigorous support to
this conjecture, as we outline below.

In ref. 19 it is shown that in d=2, conditioned on v ¥ S, the invasion
percolation neighborhood of v is asymptotically the same in probability as
the neighborhood of the origin under the IIC measure, as |v| Q .. In other
words, the two-dimensional IIC measure can be obtained by conditioning
on v ¥ S, shifting space by v, and taking the limit |v| Q .. The proof in
ref. 19 is intrinsically two-dimensional, but it is reasonable to believe that
such a statement holds in general dimensions. In particular, when d > 6,
note that if v ¥ S then v is connected to the origin inside S, which is alike
the construction in (1.3)–(1.4) (with v and 0 playing the roles of 0 and x).

Assuming that the IIC measure can be constructed by a limit of shifted
versions of invasion percolation, we obtain from Theorem 1.3 that for any
y with |y| \ 1, and |v| large

P(v+y is invaded | v is invaded) £ |y|−(d − 4). (1.17)

We can stretch this heuristic a little further, and get

P(y is invaded) £ P.(0 Y y) £ |y|−(d − 4). (1.18)
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It would be of interest to study the connections between the IIC measure
and invasion percolation in more detail, and to prove (1.17)–(1.18) in par-
ticular.

1.4. Organization

The remainder of the paper is organized as follows. In Section 2, we
modify the Hara–Slade lace expansion to suit our needs. In Section 3, we
give the proof of Theorem 1.1 assuming suitable bounds on the expansion.
Under similar assumptions we prove the spread-out part of Theorem 1.2.
In Section 4, we prove the necessary bounds, prove our theorem for the
nearest-neighbor case, and prove the nearest-neighbor part of Theorem 1.2.
In Section 5, we establish the properties of the IIC claimed in Theorem 1.3.

2. THE EXPANSION

In order to facilitate the proof of (1.13), we prove the existence of
lim|x| Q . Px(F) not only for cylinder events but also for the event {0 Y y}.
We note that it is straightforward to generalize this to k-point function
events {y1,..., yk − 1 ¥ C(0)}, but since we do not need the general case, we
omit the details. The fact that {0 Y y} is not a cylinder event causes no
extra difficulty in the expansion. However, some caution is necessary, since
it is not a priori obvious that P.(0 Y y)=lim|x| Q . Px(0 Y y), even if we
know that the limit on the right-hand side exists. The equality of the two
sides will be proved via an approximation by cylinder events.

For a set of sites A, we say that a bond lies in A if both of its end-
points are in A. We write B(m) for the cube of width m centered around
the origin. Throughout this section F will be a fixed event of one of the
following two types.

(I) F ¥ F0, and F is determined by the states of bonds in B(m),
1 [ m < ., or

(II) F={0 Y w}, for some fixed w ¥ Zd.

For events of type (I), we fix m as the smallest integer for which F is
determined by bonds in B(m). In both cases, we define the set

W=W(F)=˛B(m) if F ¥ F0

{0, w} if F={0 Y w}.
(2.1)

Since F will be fixed, we suppress the dependence of W on F.
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We carry out an expansion of P(F, 0 Y x). For this we need to
modify the first step of the Hara–Slade expansion. (14) First we need some
more notation.

Definition 2.1. (i) Two paths are called disjoint if they have no
bond in common. The sites x and y are doubly-connected if there exist two
disjoint occupied paths from x to y. We denote this event by x Z y. A set
of sites A is connected to y if there exists an x ¥ A such that x Y y, and it is
doubly-connected to y if there exist x1, x2 ¥ A such that x1 Y y and x2 Y y
via disjoint paths. We denote by x Y

A y the event that every occupied path
from x to y passes through some site in A.

(ii) We let C̃{u, v}(x) denote the cluster of x remaining after the bond
{u, v} is declared to be vacant, that is

C̃{u, v}(x)={y ¥ Zd : x Y y via a path not using {u, v}}. (2.2)

We let

C(W)={y ¥ Zd : WY y}= 0
w ¥ W

C(w). (2.3)

Similarly to (2.2), we denote by C̃{u, v}(W) the set of sites that remain con-
nected to W after declaring the bond {u, v} to be vacant, that is

C̃{u, v}(W)={y ¥ Zd : WY y via a path not using {u, v}}= 0
w ¥ W

C̃{u, v}(w).

(2.4)

(iii) We write (u, v) for a directed bond from u to v. The directed
bond (u, v) is pivotal for the connection from x to y (in short for x Q y) if a
directed occupied path from x to y using the directed bond (u, v) exists
when (u, v) is declared to be occupied, but not if (u, v) is declared to be
vacant. That is, if u ¥ C̃{u, v}(x), v ¥ C̃{u, v}(y), and y ¨ C̃{u, v}(x). Similarly,
(u, v) is pivotal for WQ x if u ¥ C̃{u, v}(W), v ¥ C̃{u, v}(x) and x ¨ C̃{u, v}(W).

(iv) We define the two-point function

y(x, y)=P(x Y y). (2.5)

By translation invariance, we have y(x, y)=y(y − x), where y(x)=y(0, x).
Given a set of sites A … Zd we say that x is connected to y in A if there is
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an occupied path from x to y consisting of bonds with both endpoints in A.
The restricted two-point function is defined by

yA(x, y)=P(x Y y in Zd 0A). (2.6)

In other words, yA(x, y) is the probability that x is connected to y via a
path not using any bonds touching the set A.

We are ready to give the expansion. The event {0 Y x} implies the
event {WY x}. We distinguish between the cases when there is no pivotal
bond for the latter event, and when there is one. The first case is equivalent
to the occurrence of 0 Y x, WZ x. In the second case, let (u, v) denote the
first pivotal bond for the event W0 x as the connection is traversed from
W to x. Since 0 Y x, the bond (u, v) is also pivotal for 0 0 x. We note
that there may be other pivotal bonds for 0 0 x that precede (u, v), but we
ignore those. We can write

P(F, 0 Y x)=P(F, 0 Y x, WZ x)

+ C
(u, v)

P 1F, 0 Y u, WZ u, (u, v) is occupied
and pivotal for W0 x

2 , (2.7)

where the summation is over all directed bonds. We introduce the notation

p (0)(x; F)=P(F, 0 Y x, WZ x). (2.8)

Next we rewrite the summand in the second term of (2.7) by condi-
tioning on the bond cluster C̃{u, v}(W). As a result of this, we will get that
the right-hand side of (2.7) equals

p (0)(x; F)+ C
(u, v)

puvE(I[F, 0 Y u, WZ u] y C̃
{u, v}(W)(v, x)), (2.9)

where puv=pcD(v − u) and I[ · ] denotes the indicator of an event. Before
proving (2.9), we note that y C̃

{u, v}(W)(v, x) is the random variable obtained
from the function yA(v, x), defined for a deterministic set A, by substituting
the random set C̃{u, v}(W) for A. In other words, the law of C̃{u, v}(W) is
governed by the expectation E in (2.9), whereas the value of the restricted
two-point function in (2.9), given the value of C̃{u, v}(W), is determined by a
second expectation, that is implicitly present through the definition of the
restricted two-point function. The second expectation is ‘‘nested’’ inside the
first.

The proof of (2.9) requires a few definitions. For a configuration w

and a (possibly random) set of sites S, we let wS denote the configuration
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obtained by declaring all bonds with both endpoints in Zd 0S to be vacant.
By the event ‘‘F occurs on S’’ we mean {w: wS ¥ F}. The event in the
summand of (2.7) can be rewritten as the intersection of three events,
namely

• F, 0 Y u, WZ u occur on C̃{u, v}(W)

• {u, v} is occupied

• v Y x in Zd 0 C̃{u, v}(W).

One can prove, for example via an application of Lemma 2.4 in ref. 16,
that the probability of the intersection is

puvE(I[F, 0 Y u, WZ u occur on C̃{u, v}(W)] y C̃
{u, v}(W)(v, x)). (2.10)

The expression in (2.10) can be simplified by noting that the words ‘‘occur
on C̃{u, v}(W)’’ can be omitted, since the restricted two-point function is 0
whenever the required connections exist, but do not occur on C̃{u, v}(W).
Recalling the definition in (2.8), it follows that the right-hand side of (2.7)
equals (2.9). We note that the summation in (2.9) is over all bonds, and it
includes bonds with u=x and v ¥ W, despite the fact that (u, v) did not
correspond to a pivotal bond in these cases. The identity still holds, since
y C̃

{u, v}(W)(v, x)=0.
We write

y C̃
{u, v}(W)(v, x)=y(v, x) − [y(v, x) − y C̃

{u, v}(W)(v, x)]. (2.11)

We replace the restricted two-point function in (2.9) by the difference
above. To write the result concisely, we define

k (0)(v; F)=C
u

puvp
(0)(u; F)=C

u
puvP(F, 0 Y u, WZ u), (2.12)

and

R (0)(x; F)= C
(u, v)

puvE(I[F, 0 Y u, WZ u]{y(v, x) − y C̃
{u, v}(W)(v, x)}). (2.13)

Then the expression in (2.9) equals

p (0)(x; F)+C
v

k (0)(v; F) y(v, x) − R (0)(x; F), (2.14)

assuming that the expressions for the second and third term converge.
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The Hara–Slade expansion gives an expression for y(v, x) − yA(v, x),
with A a deterministic set of sites as input. We will take the result of this
part of the expansion without change from ref. 14, and substitute it
into (2.13). This leads to a further expansion of the remainder term
R (0)(x; F) in (2.14). The proposition below summarizes the resulting
expression for P(F, 0 Y x). The statement of the proposition involves
events EŒ(v, x; A) defined in ref. 14. We repeat the definitions for the
reader. Let

EŒ(v, x; A)=3v YA x and there is no pivotal bond (u1, v1)
for the connection v Y x such that v YA u1

4 . (2.15)

The key identity behind the further expansion of y(v, x) − yA(v, x) is

y(v, x) − yA(v, x)=P(EŒ(v, x; A))

+ C
(u1, v1)

pu1v1
E(I[EŒ(v, u1; A)] y C̃

{u1, v1}(v)(v1, x)), (2.16)

which is obtained similarly to (2.7) and (2.9), and is proved in ref. 14. Now
an application of (2.11) to A=C̃{u1, v1}(v)(v1, x) allows one to iterate the
procedure. The final result can be described as follows. Given bonds
(u0, v0), (u1, v1),... let

C̃0=C̃{u0, v0}(W) and C̃j=C̃{uj, vj}(vj − 1) for j \ 1. (2.17)

Let

Ij=I[EŒ(vj − 1, uj; C̃j − 1)], j \ 1. (2.18)

Proposition 2.2. If the expressions in (2.19)–(2.22) below converge,
then for N \ 0 and p=pc

P(F, 0 Y x)

= C
N

n=0
(−1)n p (n)(x; F)+ C

N

n=0
(−1)n C

v
k (n)(v; F) y(v, x)

+(−1)N+1 R (N)(x; F). (2.19)

Here p (0)(x; F) is given by (2.8), and for n \ 1,

p (n)(x; F)= C
(u0, v0)

pu0v0
· · · C

(un − 1, vn − 1)
pun − 1vn − 1

E0(I[F, 0 Y u0, WZ u0]

× E1(I1E2(I2 · · · En − 1(In − 1En(I[EŒ(vn − 1, x; C̃n − 1)])) · · · ))). (2.20)
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Also, for n \ 0,

k (n)(v; F)=C
u

puvp
(n)(u; F) (2.21)

and

R (N)(x; F)= C
(u0, v0)

pu0v0
· · · C

(uN, vN)
puNvN

E0(I[F, 0 Y u0, WZ u0]

× E1(I1E2(I2 · · · EN(IN · {y(vN, x) − y C̃N(vN, x)}) · · · ))). (2.22)

Remark. (1) The expectations in the above expressions are nested
in the sense explained after (2.9). That is, the law of the set C̃k is governed
by the expectation Ek, and C̃k is a deterministic set with respect to the
nested expectation Ek+1.

(2) By definition, p (n)(x; F) and k (n)(x; F) are non-negative. The
bounds we prove in Section 4 will imply that they are finite, justifying the
steps leading to (2.19).

Proposition 2.2 constitutes the lace expansion for P(F, 0 Y x). In
Section 3, we state bounds on the expansion that will allow us to prove
Theorem 1.1 and Theorem 1.2 in the spread-out case. We prove the bounds
in Section 4. The proof of Theorem 1.3 follows in Section 5.

3. EXISTENCE OF THE IIC

3.1. Bound on the Expansion and Proof of Theorem 1.1.

Theorem 1.1 will be shown using the proposition below.

Proposition 3.1. Fix d > 6 and p=pc. There is an L0=L0(d), such
that the following holds.

(a) For L \ L0, and any event F of type (I) or type (II), there is a
C=C(F, L, d) such that

C
.

n=0
p (n)(x; F) [

C
(|x|+1)2(d − 2) . (3.1)

(b) For any x ¥ Zd

lim
N Q .

R (N)(x; F)=0. (3.2)

The proof of Proposition 3.1 is in Section 4.
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Proof of Theorem 1.1. Subject to Proposition 3.1. By Proposi-
tion 3.1(a) and 2.21, the expressions

P(x; F)= C
.

n=0
(−1)n p (n)(x; F), Y(x; F)= C

.

n=0
(−1)n k (n)(x; F) (3.3)

converge, and we have

|P(x; F)| [
C

(|x|+1)2(d − 2) , |Y(x; F)| [
C

(|x|+1)2(d − 2) , (3.4)

where C denotes a constant depending on F, L, and d. By part (b) of the
Proposition, we may take the limit N Q . in (2.19) to obtain

P(F, 0 Y x)=P(x; F)+ C
y ¥ Z

d
Y(y; F) y(x − y). (3.5)

Therefore, dividing (3.5) by y(x) gives

Px(F)=
P(x; F)

y(x)
+ C

y ¥ Z
d

Y(y; F)
y(x − y)

y(x)
. (3.6)

By (1.7) and (3.4) we have

lim
|x| Q .

P(x; F)
y(x)

=0. (3.7)

In the second term of (3.6), we split the sum according to whether
|x − y| [ 1

2 |x| or |x − y| \ 1
2 |x|. In the former case, we use |y| \ 1

2 |x|, (3.4)
and d > 4 to obtain the bound

C
y: |x − y| [ 1

2 |x|
|Y(y; F) y(x − y)| [

C
|x|2(d − 2) C

y: |x − y| [ 1
2 |x|

1
(|x − y|+1)d − 2

[
C

|x|2(d − 2) |x|2=o(y(x)). (3.8)

Therefore, we are left to deal with |x − y| \ 1
2 |x|. In this regime,

y(x − y)/y(x) is uniformly bounded, and converges to 1 for every fixed y.
Moreover, Y(y; F) is absolutely summable, hence by dominated conver-
gence, we have

P.(F)= lim
|x| Q .

Px(F)= C
y ¥ Z

d
Y(y; F)=pc C

y ¥ Z
d

P(y; F), (3.9)
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where the last step follows from ; v D(v − u)=1. This completes the proof
of the first statement of Theorem 1.1. The second statement follows from
Kolmogorov’s extension theorem (see ref. 27, III.3). L

Remark. It is not apparent from the proof that the assumption d > 6
was necessary. The role of this condition is hidden in the proof of the
bounds on p (n), and in many parts of this paper does not show up directly.
Although the bound on p (n) becomes summable when d > 4, in order to
prove it, the condition d > 6 is essential. In fact, the expansion is expected
to diverge at pc when d [ 6. The role of d > 6 will become clear in Sec-
tion 5.

3.2. Two-Point Function Events

In this section we show that for any y ¥ Zd

P.(0 Y y)= lim
|x| Q .

Px(0 Y y). (3.10)

Since Proposition 3.1 holds for events of type (II), the existence of the limit
on the right-hand side follows by the argument we have just given. We
write

F={0 Y y}, Fn={0 Y y inside B(n)}, (3.11)

so that Px(F)=Px(Fn)+Px(F0Fn). We also define the event

Gn(y, z; x)={y Y x and z Y Zd 0B(n) disjointly}. (3.12)

We claim that for ||y||. < n < ||x||. we have

(F0Fn) 5 {0 Y x} … Gn(0, y; x) 2 Gn(y, 0; x). (3.13)

Indeed, when the left-hand event occurs, y is connected to 0, but not inside
B(n). Fix an occupied path c that realizes this connection, and also another
occupied path cŒ from x to c, with P denoting the point where cŒ reaches c.
Since c starts and ends in B(n), but leaves B(n), it can be subdivided into
three pieces: c1=the part from 0 to the first point outside B(n), c2=the
part from y to the first point outside B(n) and c3=the piece between c1

and c2. If P ¥ c1 then Gn(0, y; x) occurs, if P ¥ c2 then Gn(y, 0; x) occurs,
while if P ¥ c3 then both of them occur, which implies (3.13). By the BK
inequality (see ref. 11, Section 2.3), we have

P(F0Fn, 0 Y x) [ P(0 Y x) P(y Y Zd 0B(n))

+P(y Y x) P(0 Y Zd 0B(n)). (3.14)
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Hence,

Px(F0Fn) [ P(y Y Zd 0B(n))+P(0 Y Zd 0B(n))
y(x − y)

y(x)
. (3.15)

Since there is no percolation at pc, and since y is fixed, by choosing n large,
the right-hand side of (3.15) can be made arbitrarily small, uniformly in x
with ||x||. > n. This implies that

lim
|x| Q .

Px(F)= lim
n Q .

lim
|x| Q .

Px(Fn)= lim
n Q .

P.(Fn)=P.(F), (3.16)

where the second equality holds because Fn is a cylinder event. This
establishes (3.10). L

3.3. Susceptibility Definition of P.

The convergence of Qp(F) towards a limit Qpc
(F) is established using

the lace expansion in a similar way as in Section 3.1.
We start by noting that the lace expansion is valid for p [ pc. Write

p (n)
p (x; F), k (n)

p (v; F) etc. for the quantities in the expansion, where we
write the subscript explicitly to emphasize the dependence on p [ pc. In this
section we assume that

(3.1) and (3.2) hold uniformly in p [ pc. (3.17)

Assumption (3.17) readily follows from the proof of Proposition 3.1 in
Section 4. Below, we also assume a continuity property, namely that

lim
p q p−

c

Yp(v; F)=Ypc
(v; F). (3.18)

The proof of this is also in Section 4.

Proof of Theorem 1.2. (Spread-Out Case) Subject to (3.17)–(3.18).
By the assumptions made above, similarly to (3.5) we obtain

Pp(F, 0 Y x)=Pp(x; F)+C
v

Yp(v; F) yp(v, x). (3.19)

Note that Pp and Yp satisfy the bound (3.4) uniformly in p [ pc.
Fix p < pc and sum (3.19) over x to obtain

C
x ¥ Z

d
Pp(F, 0 Y x)=q(p) C

v ¥ Z
d

Yp(v; F)+ C
x ¥ Z

d
Pp(x; F). (3.20)
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Thus,

Qp(F)= C
v ¥ Z

d
Yp(v; F)+

;x ¥ Z
d Pp(x; F)
q(p)

. (3.21)

The first term on the right hand side of (3.21) converges by (3.18) and
dominated convergence. Also, the numerator of the second term is uni-
formly bounded, whereas q(p) ‘ . by ref. 11, Proposition 6.49. When
p q p−

c , we obtain

Qpc
(F)= C

v ¥ Z
d

Ypc
(v; F). (3.22)

We complete the proof that P.=Qpc
by noting that for any cylinder event

F, (3.9) implies P.(F)=; v ¥ Z
d Ypc

(v; F)=Qpc
(F). L

The assumptions made will be proved in Section 4.2. The proof of
Theorem 1.2 for the nearest-neighbor model in sufficiently high dimensions
is in Section 4.3.

4. BOUNDS ON THE LACE EXPANSION

We prove Proposition 3.1 via standard diagrammatic estimates and
borrowing bounds from ref. 13.

4.1. Diagrammatic Bounds

We obtain diagrammatic bounds on p (n)(x; F), using the method of
ref. 14. In fact, our argument only differs from theirs in estimating the
contribution to (2.20) involving C̃0, which is special in our case. A key
ingredient in the diagrammatic estimates is the following consequence of
the BK inequality (see ref. 11, Section 2.3). Let V1,..., Vn be sets of lattice
paths, and let Ei be the event that at least one of the paths in Vi is
occupied. The event E1 p · · · p En represents the event that there exist
pairwise bond-disjoint occupied paths wi ¥ Vi, i=1,..., n. Then the
inequality

P(E1 p · · · p En) [ P(E1) P(E2) · · · P(En) (4.1)

follows from the BK inequality and the fact that the Ei are increasing
events.
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Throughout this section, C and CW denote generic constants that
depend on d, L, and in the second case also on W. Their value may change
from line to line. Using (4.1), we immediately obtain the estimate

p (0)(x; F) [ P 1 0
w ¥ W

(0 Y x) p (w Y x)2 [ C
w ¥ W

y(x) y(x − w). (4.2)

To bound p (n) for n \ 1, we estimate the nested expectation in (2.20) from
inside out (right to left). Apart from the contribution coming from E0, these
bounds are identical to those in ref. 14, and we do not give all the details.
For the innermost expectation En, we first observe that whenever
EŒ(vn − 1, x; C̃n − 1) occurs, there exist wn ¥ C̃n − 1 and t ¥ Zd with four disjoint
paths realizing the connections vn − 1 Y t, t Y wn, wn Y x, t Y x. Applying
the BK inequality gives

En(I[EŒ(vn − 1, x; C̃n − 1)])

[ C
t, wn ¥ Z

d
I[wn ¥ C̃n − 1] y(t − vn − 1) y(wn − t) y(x − wn) y(x − t). (4.3)

The indicator I[wn ¥ C̃n − 1] is a random variable for the expectation En − 1

that must be treated in conjunction with the event EŒ(vn − 2, un − 1; C̃n − 2),
when n \ 2. It can be shown (see ref. 14, Lemma 2.5 or ref. 26,
Lemma 5.5.8 for details) that for 1 [ i [ n − 1 we have

Ei(I[EŒ(vi − 1, ui; C̃i − 1)] I[wi+1 ¥ C̃i])

[ C
wi, zi, t

I[wi ¥ C̃i − 1] y(wi+1 − zi) y(ui − wi) y(wi − t)

× (y(t − vi − 1) y(zi − t) y(ui − zi)+y(zi − vi − 1) y(t − zi) y(ui − t)). (4.4)

Finally, the expectation E0 is estimated using

E0(I[F, 0 Y u0, WZ u0] I[w1 ¥ C̃0])

[ E0
1 C

w ¥ W

I[(0 Y u0) p (w Y u0)] I[w1 ¥ C̃0]2

[ CW C
w ¥ W

C
z0

y(u0) y(z0 − w) y(u0 − z0) y(w1 − z0), (4.5)

for some constant CW, where the second step is proved as follows. On the
event inside the expectation, there are disjoint connections 0 Y u0 and
w Y u0, and we also have a connection WY w1. We distinguish between
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three cases in how the latter can happen. One of them is that there is a z0

on the path from w to u0 with disjoint connections w Y z0, z0 Y u0, z0 Y w1

and 0 Y u0. The probability of this is bounded above by the right hand side
of (4.5) with CW=1. The second case is when the roles of 0 and w are
interchanged, and z0 lies on the path from 0 to u0. The upper bound in this
case has the factors y(z0) y(u0 − w) instead of the factors y(u0) y(z0 − w) in
(4.5). Since W is bounded, the former is bounded above by CW times the
latter for some constant CW, leading to an upper bound of the required
form. The third case is when there is a z0 ¥ W, and disjoint connections
0 Y u0, w Y u0, and z0 Y w1. In this case, we use w, z0 ¥ W and the
inequalities y(u0 − w) [ CWy(u0 − z0) and 1 [ CWy(z0 − w) to arrive at an
upper bound of the required form, after extending the summation over z0

from W to Zd. We note that the w=0 term of our bound corresponds with
the bound proved in ref. 14, Proposition 2.4.

We now recast the bounds on p (n)(x; F) in a more convenient form.
We define

A (0)(x, y; F)= C
w ¥ W

C
a, b ¥ Z

d
y(a) y(b − w) y(a − b) ỹ(x − a) y(y − b), (4.6)

A1(u, v, x, y)=y(u − v) C
a, b ¥ Z

d
y(u − a) y(v − b) y(a − b) y(y − a) ỹ(x − b),

(4.7)

A2(u, v, x, y)=y(y − u) C
a, b ¥ Z

d
y(u − a) y(v − a) y(a − b) y(v − b) ỹ(x − b),

(4.8)

A (i)(u, v, x, y)=A1(u, v, x, y)+A2(u, v, x, y) (i \ 1), (4.9)

A (end)(u, v, x, y)=y(u − v) y(x − v) y(y − u). (4.10)

The above quantities are depicted in Fig. 1. The statement of the bound
involves the function

M (0)(x, y; F)= C
w ¥ W

y(x) y(y − w), (4.11)

and the functions M(N) defined for N \ 1 by

M (N)(x, y; F)= C
u1, v1, ..., uN, vN ¥ Z

d
A (0)(u1, v1; F) D

N − 1

i=1
A (i)(ui, vi, ui+1, vi+1)

× A (end)(uN, vN, x, y). (4.12)
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Fig. 1. Diagrams representing the quantities in (4.6)–(4.10) and diagrams for the bounds on
p (0)(x; F), p (1)(x; F), and p (2)(x; F). Lines ending with a vertical bar represent ỹ-lines, and are
due to pivotal bonds.

For N=1, the empty product over i is interpreted as 1. Note that the
dependence on the event F only resides in the first factor A (0).

As in Proposition 2.4 of ref. 14, it follows from (4.2)–(4.5) that we
have

0 [ p (N)(x; F) [ CWM (N)(x, x; F), N \ 0. (4.13)

4.2. Proof of Claims Made in Section 3

Proof of Proposition 3.1. In order to prove (3.1), we bound the
diagrams M (N)(x, x; F) in terms of diagrams that have been estimated in
ref. 13. Define

M (0)(x, x)=y(x) y(x). (4.14)

Similarly, let

A (0)(x, y)=C
a, b

y(a) y(b) y(a − b) ỹ(x − a) y(y − b), (4.15)

and for N \ 1 define M (N)(x, y) by replacing A (0)(u1, v1; F) by A (0)(u1, v1)
in (4.12). Since W is finite, we have

M (N)(x, x; F) [ CWM (N)(x, x), N \ 0. (4.16)

This and (4.13) imply

0 [ p (N)(x; F) [ CW M (N)(x, x), N \ 0. (4.17)
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For N=0, (1.8) implies

M (0)(x, x) [
C

(|x|+1)2(d − 2) . (4.18)

For the terms with N \ 1, recall the small parameter b=L−2+a from (1.8).
It is shown in ref. 13, (4.72) that

M(N)(x, x) [
(Cb)N

(|x|+1)2(d − 2) , N \ 1, (4.19)

where C does not depend on b. Therefore, when L is sufficiently large, we
can sum (4.19) over N to get

C
.

N=0
p (N)(x; F) [ CW C

.

N=0
M (N)(x, x) [

CW

(|x|+1)2(d − 2). (4.20)

This proves part (a) of Proposition 3.1.
For part (b), we recall from Proposition 2.4 of ref. 14 that for N \ 1

the expansion remainder term R (N)(x; F) of (2.22) obeys

0 [ R (N)(x; F) [ CW C
u ¥ Z

d
M (N)(u, u; F) ỹ(x − u)

[ CW C
u ¥ Z

d
M (N)(u, u) ỹ(x − u). (4.21)

Recalling (1.8) and (4.19), the claim in (3.2) follows from (4.21) and the
fact

sup
x ¥ Z

d
C
u

1
(|u|+1)2(d − 2) (|x − u|+1)d − 2 < ., (4.22)

which holds whenever d > 4. This completes the proof of Proposi-
tion 3.1. L

Now we turn to the proof of the assumptions made in Section 3.3.

Proof of Theorem 1.2. (Spread-Out Case) Completed. By mono-
tonicity of yp(x), it is clear that the bounds derived in Section 4.1 hold uni-
formly in p [ pc. This shows that (3.1) and (3.2) hold for p [ pc.

We are left to show limp q p−
c

Yp(v; F)=Ypc
(v; F). We prove this by

applying the dominated convergence theorem to the sums in the definition
of Yp. Similar ideas were used in ref. 16, Section 4. First, note that it is
enough to show limp q p−

c
p (n)

p (x; F)=p (n)
pc

(x; F), for x ¥ Zd and n \ 0, due
to (3.3), (2.21), (4.17) and a dominated convergence argument.
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To show the claim for p (n)
p , we use the standard monotone coupling of

the measures Pp (see ref. 11, Section 2.4). Bonds b={u, v} are assigned
i.i.d. uniform random variables w(b), and b is called p-occupied, if
w(b) < pD(v − u). We denote the law governing w by P.

Let E−

p(v, x; A) denote the event in (2.15) when connections are deter-
mined by p-occupied bonds. It is easy to verify that limp q p−

c
I[E−

p(v, x; A)]=
I[E−

pc
(v, x; A)] holds on the event when there is no infinite pc-occupied

cluster, and hence P-a.s. Similar convergence holds for the indicator of the
event in (2.8), as p q p−

c .
Now the argument for p (n)

p can be completed using the following
statement, whose proof is elementary. Suppose that random variables
Xp(w1) and Yp(w1, w2) are uniformly bounded, and

(i) limp q p−
c

Xp(w1)=Xpc
(w1), P-a.s.,

(ii) limp q p−
c

Yp(w1, w2)=Ypc
(w1, w2), (P × P)-a.s.

Then limp q p−
c

E1[XpE2Yp]=E1[Xpc
E2Ypc

]. Applying the statement to the
nested expectations in (2.20), working from the inside out (from right to
left), we obtain that each term in the definition of p (n)

p (x; F) converges as
p Q pc. By the diagrammatic bounds of Section 4.1, we can apply domi-
nated convergence to conclude that p (n)

p (x; F) Q p (n)
pc

(x; F). This completes
the proof of Theorem 1.2 for the spread-out case. L

4.3. Nearest-Neighbor Percolation

In this section we state a theorem that provides a sufficient condition
for the conclusions of Theorem 1.1 in a more general setting, and we apply
it to the nearest-neighbor model.

Theorem 4.1. Let d > 6 and p=pc. Assume that there exists a c > 0
such that

y(x)=
c

|x|d − 2 (1+o(1)) as |x| Q .. (4.23)

Assume also that there exists q > d and C > 0, such that

C
.

n=0
M (n)(x, x) [

C
(|x|+1)q . (4.24)

Then the limit

P.(F)= lim
|x| Q .

Px(F) (4.25)
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exists for any cylinder event F, and also for F={0 Y y}. Also, P. extends
uniquely from F0 to a probability measure on F.

Proof. The proof is essentially the same as the proof of Theorem 1.1.
By (4.24), M (N)(x, x) is summable in N, therefore, by (4.16) and (4.13),
P(x; F) and Y(x; F) are well defined, and (3.5) holds. By (4.24) and
q > d − 2, the term P(x; F)/y(x) in (3.6) is an error term. We use (4.24)
and q > d to see that the sum over y with |x − y| [ 1

2 |x| leads to an error
term by adapting the argument in (3.8). We use the summability of the
bound (4.24) in x, as well as (4.23) to see that the sum over y with
|x − y| \ 1

2 |x| converges by dominated convergence to the right-hand side of
(3.9). This completes the proof. L

The conditions of Theorem 4.1 hold for nearest-neighbor percolation
in d \ d0 for some d0 > 6 by ref. 12. Therefore, we obtain the following
corollary.

Corollary 4.2. There exists d0 > 6 such that for d > d0 in the nearest-
neighbor model the limit in (4.25) exists, and defines a measure P..

Quite similarly, it is easy to complete the proof of Theorem 1.2 for the
nearest-neighbor model.

Proof of Theorem 1.2. (Nearest-Neighbor Model). We can follow
the argument of Section 3.3. For this we only need to show that P(x; F)
and Y(x; F) are absolutely summable in x. This follows from (4.17) and
the fact that (4.24) holds for the nearest-neighbor model in sufficiently high
dimension. L

We remark that the above proof also applies to oriented percolation,
both in the nearest-neighbor case in sufficiently high dimensions and for
spread-out oriented percolation due to the results in ref. 29, Theorems 1–2,
together with the bounds on the lace expansion in ref. 29, Sections 4–6.
Thus, the construction in (1.6) applies both for oriented and unoriented
percolation. Alternatively, for the spread-out model, we can use the bounds
in ref. 18, Section 4 to arrive at the fact that P(x; F) and Y(x; F) are
absolutely summable in x.

5. PROPERTIES OF THE IIC

We now prove Theorem 1.3. We separate the proof into three parts.
We start with the general properties claimed in Theorem 1.3(i–ii), that only
require soft arguments. Then we establish properties of the IIC connectivity
function and the backbone.

Incipient Infinite Cluster for High-Dimensional Unoriented Percolation 649



5.1. General Properties

Proof of Theorem 1.3(i). We observe that

P.(|C(0)|=.)= lim
n Q .

P.(0 Y Zd 0B(n))

= lim
n Q .

lim
|x| Q .

Px(0 Y Zd 0B(n))=1. (5.1)

In the second step we used that {0 Y Zd 0B(n)} is a cylinder event, since D
has finite range. This completes the proof of Theorem 1.3(i).

Proof of Theorem 1.3(ii). To show that the IIC has one end, let
Fn(y1, y2) denote the event that y1, y2 ¥ C(0) and there are disjoint paths
from y1 and y2 to Zd 0B(n). Recalling the definition of Gn in (3.12), we
have

Fn(y1, y2) 5 {0 Y x} … Gn(y1, y2; x) 2 Gn(y2, y1; x). (5.2)

As in the proof of (3.10), this implies limn Q . P.(Fn(y1, y2))=0. It follows
that there are no disjoint infinite paths starting at y1 and y2 P.-a.s. Since
y1 and y2 are arbitrary, this proves the claim in Theorem 1.3(ii).

5.2. The Connectivity Function

In this section we prove Theorem 1.3(iii). We start with the upper
bound, which is simpler. Unless otherwise stated, throughout Sections 5.2
and 5.3, C denotes a generic constant that only depends on d.

5.2.1. Upper Bound

Proof of Theorem 1.3(iii) [Upper bound]. By (3.10),

P.(0 Y y)= lim
|x| Q .

P(0 Y y, x)
y(x)

. (5.3)

The tree-graph inequality (5) gives

P(0 Y y, x) [ C
a ¥ Z

d
y(a) y(x − a) y(y − a). (5.4)

This yields

P.(0 Y y) [ lim sup
|x| Q .

C
a ¥ Z

d
y(a) y(y − a)

y(x − a)
y(x)

. (5.5)
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We split the sum into |x − a| [ 1
2 |x| and |x − a| \ 1

2 |x|. In the former case, we
have |a| \ 1

2 |x|, and since |x| Q ., we can assume |y − a| \ 1
4 |x|. We then use

(1.8), to obtain the bound

C
a: |x − a| [ 1

2 |x|
y(a) y(y − a) y(x − a) [

C
|x|2(d − 2) C

a: |x − a| [ 1
2 |x|

1
(|x − a|+1)d − 2

[
C

|x|2(d − 2) |x|2=o(y(x)). (5.6)

Therefore, we are left to deal with |x − a| \ 1
2 |x|. In this regime,

y(x − a)/y(x) is uniformly bounded, and converges to 1 for every fixed a.
Moreover, y(a) y(y − a) is summable in a. In fact, it follows by a standard
convolution estimate such as ref. 13, Proposition 1.7, that

(y f y)(y)= C
a ¥ Z

d
y(a) y(y − a) [ C

a ¥ Z
d

C
(|a|+1)d − 2 (|y − a|+1)d − 2

[
C

(|y|+1)d − 4 . (5.7)

Hence, applying dominated convergence in (5.5),

P.(0 Y y) [ (y f y)(y) [
C

(|y|+1)d − 4 , (5.8)

as required.

5.2.2. Lower Bound
For the lower bound in Theorem 1.3(iii), we need the description of

P. in terms of the lace expansion. Applying (3.9) with F={0 Y y}, we get

P.(0 Y y)=pc C
u ¥ Z

d
P(u; F)=pc C

.

n=0
(−1)n C

u ¥ Z
d

p (n)(u; F). (5.9)

Here the n=0 term will be the main contribution. More precisely, we
prove the proposition below. For its statement, recall the definition of s

from (1.2).

Proposition 5.1. Let d > 6. For L \ L0(d) the following holds.

(i) There are constants C1=C1(d) and K=K(L, d) such that for
the event F={0 Y y} with |y| \ K,

C
u ¥ Z

d
p (0)(u; F) \

C1

s4(|y|+1)d − 4 . (5.10)
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(ii) There is a constant C2=C2(d) independent of b and y, such that
for |y| > L,

C
n \ 1

C
u ¥ Z

d
p (n)(u; F) [

C2b3

(|y|+1)d − 4 . (5.11)

Proof of Theorem 1.3(iii) [Lower bound] Assuming Proposi-
tion 5.1. We pick a > 0 sufficiently small so that b3=L−6+3a ° s−4=
CL−4. Then for L sufficiently large, (5.9), (5.10), and (5.11) yield

P.(0 Y y) \
C1

2s4(|y|+1)d − 4 , |y| \ K. (5.12)

Decreasing the constant on the right-hand side, the lower bound of
Theorem 1.3(iii) follows for all |y| \ 1. L

In the proof of Proposition 5.1, we need the following improvement
on (1.7). By ref. 13, Theorem 1.2,

y(x)=
adA

s2(|x| K 1)d − 2 (1+O((|x| K 1)−s)), (5.13)

where ad is an absolute constant, A=1+O(b), s > 0, and the constant in
the error term for (5.13) depends on L. We will also often use the following
observation. By the BK-inequality, for x ] 0 we have

y(x)=P 10
y

{{0, y} occ.} p {y Y x}2 [ C
y

pcD(y) y(x − y)=ỹ(x). (5.14)

Proof of Proposition 5.1(i). The event in the definition of p (0)(u; F)
is

{0 Y y, 0 Y u, {0, y} Z u}={(0 Y u) p (y Y u)}. (5.15)

Therefore,

p (0)(u; F)=P((0 Y u) p (u Y y)) \ C
v

P((u, v) occ. and piv. for 0 Y y).
(5.16)

We evaluate the expression on the right-hand side in more detail now.
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Similarly to the discussion leading to (2.9), we can write

P((u, v) is occ. and piv. for 0 Y y)=pcD(v − u) E(I[0 Y u] y C̃
(u, v)(0)(v, y)).

(5.17)

The right-hand side can be rewritten as

P(0 Y u) pcD(v − u) y(y − v) − E0(I[0 Y u] P1(v ı||̀
C̃

(u, v)(0) y)). (5.18)

By the BK-inequality, for A … Zd we have

P(v }A y)=P 1 0
w ¥ A

{v Y w} p {w Y y}2

[ C
w ¥ Z

d
I[w ¥ A] P({v Y w} p {w Y y})

[ C
w ¥ Z

d
I[w ¥ A] y(v − w) y(y − w). (5.19)

Therefore, taking A=C̃ (u, v)(0) … C(0),

P1(v ı||̀
C̃

(u, v)(0) y) [ C
w ¥ Z

d
I[w ¥ C(0)] y(v − w) y(y − w). (5.20)

Substituting this into (5.18) yields

P((u, v) is occ. and piv. for 0 Y y)

\ pcD(v − u) y(u) y(y − v) − C
w ¥ Z

d
P(0 Y u, w) y(v − w) y(y − w). (5.21)

The tree-graph bound (5) implies that

P(0 Y u, w) [ C
z ¥ Z

d
y(z) y(w − z) y(u − z). (5.22)

Therefore,

P((u, v) is occ. and piv. for 0 Y y)

\ pcD(v − u) y(u) y(y − v)

− pcD(v − u) C
w, z ¥ Z

d
y(z) y(w − z) y(u − z) y(v − w) y(y − w). (5.23)

Introducing the notation

g(x)=y(x)(y f ỹ)(x), (5.24)
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we conclude that

C
u

p(0)(u; F) \ C
(u, v)

pcD(v−u) y(u) y(y−v)

− C
(u, v)

pcD(v−u) C
w, z ¥ Z

d
y(z) y(w−z) y(u−z) y(v−w) y(y−w)

=(y f ỹ)(y)−(y f g f y)(y)=(y f [y f [pcD−g]])(y). (5.25)

We now investigate pcD − g in more detail. An application of (1.8) and
(5.7) yields

0 [ g(x) [
Cb

(|x|+1)2d − 6 . (5.26)

Using that D has a finite range, it follows that

|pcD(x) − g(x)| [
C(L)

(|x|+1)2d − 6 , (5.27)

and this bound is summable in x, when d > 6.
An application of a convolution lemma (see ref. 13, Proposition 1.7(ii))

together with (5.27) and (5.13) yields

(y f [pcD − g])(x)=
adA ;y [pcD(y) − g(y)]

s2(|x| K 1)d − 2 +e(x)=m(x)+e(x), (5.28)

where m(x) is defined as the first term in the middle expression, and

e(x)=O((|x|+1)−(d − 2+s)), (5.29)

with an L-dependent constant. By ref. 13, Corollary 1.5, pc=1+O(b),
which together with (5.26) implies

C
y

[pcD(y) − g(y)]=1+O(b). (5.30)

Therefore m(x) is almost (1+O(b)) y(x).
We complete the proof by giving a lower bound on y f (m+e). We can

in fact restrict our attention to y f m, since by (1.8) and (5.29)

|(y f e)(y)|=O((|y|+1)d − 4+s), (5.31)
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with an L-dependent constant, which is of smaller order than the bound
claimed in (5.10). To obtain a lower bound on (y f m)(y) for |y| sufficiently
large, observe that by (5.13),

y(z) \ Cs−2(|z|+1)−(d − 2), |z| \ K0 (5.32)

for some K0=K0(L, d). Recalling the definition of m in (5.28), and noting
that y, m \ 0, we have

(y f m)(y)=C
z

y(z) m(y − z) \ C
z: 1

4 |y| [ |z|, |y − z| [ 4 |y|
y(z) m(y − z)

\
C

s4(|y|+1)2d − 4 C
z: 1

4 |y| [ |z|, |y − z| [ 4 |y|
1=

C
s4(|y|+1)d − 4 , (5.33)

whenever |y| \ 4K0. Combining (5.25), (5.28), (5.31), and (5.33) gives Pro-
position 5.1(i). L

Proof of Proposition 5.1(ii). We will use a modification of the dia-
grams from Section 4. Here we need to be more careful about the depen-
dence of the diagrams on the event F={0 Y y}.

Recalling (5.15) and the fact W={0, y}, we can replace the bounds in
(4.5) by

E0(I[F, 0 Y u0, WZ u0] I[w1 ¥ C̃0])

[ C
z0

[y(u0) y(z0 − y) y(u0 − z0) y(w1 − z0)

+y(u0 − y) y(z0) y(u0 − z0) y(w1 − z0)]. (5.34)

We now investigate the arising diagrams in some detail.
Define

A (0)(u, v, x, z)= C
a, b ¥ Z

d
y(a − u) y(b − v) y(a − b) ỹ(x − a) y(z − b), (5.35)

Ã (0)(x, z; F)=A (0)(0, y, x, z)+A(0)(y, 0, x, z). (5.36)

Recalling (4.7)–(4.10), we further define

M̃ (N)(x, z; F)= C
u1, v1,..., uN, vN ¥ Z

d
Ã (0)(u1, v1; F)

× D
N − 1

i=1
A (i)(ui, vi, ui+1, vi+1) A (end)(uN, vN, x, z). (5.37)
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Then, as in Section 4, (5.34) and (4.3)–(4.4) imply

p (N)(x; F) [ M̃ (N)(x, x; F). (5.38)

The lemma below gives a bound on M̃ (N)(x, z; F). In its proof, we use
the definition

T(x, z)= C
u, v ¥ Z

d

1
(|u − v|+1)d − 2 (|z − u|+1)d − 2 (|x − v|+1)d − 2 ,

T̄= sup
x, z ¥ Z

d
T(x, z).

(5.39)

We note that T(x, z), T̄ < . precisely when d > 6. Thus, here we indeed use
that d > 6.

Lemma 5.2. There is a constant C depending only on d, such that

M̃ (N)(x, z; F)

[ (Cb)N 3 1
(|x|+1)d − 2

1
(|z − y|+1)d − 2+

1
(|x − y|+1)d − 2

1
(|z|+1)d − 2

4 .

(5.40)

Proof. We define the following auxiliary function. For x, z ¥ Zd, let

S(x, z; F)= C
u, v ¥ Z

d

1
(|u|+1)d − 2 (|v − y|+1)d − 2 (|u − v|+1)d − 2

×
1

(|z − u|+1)d − 2 (|x − v|+1)d − 2 . (5.41)

We claim that S(x, z; F) satisfies

S(x, z; F) [ CT̄
1

(|x − y|+1)d − 2 (|z|+1)d − 2 . (5.42)

To prove (5.42), we write S(x, z; F) [ ;4
i=1 Si(x, z; F), with Si(x, z; F)

defined to be the contribution to S(x, z; F) arising from each of the four
cases below.

Case 1. |y − v| \ |x − v| and |u| \ |z − u|. This implies |y − v| \

|x − y|/2 and |u| \ |z|/2, so that
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S1(x, z; F) [
C

(|x − y|+1)d − 2 (|z|+1)d − 2

× C
u, v

1
(|z − u|+1)d − 2 (|u − v|+1)d − 2 (|x − v|+1)d − 2

[ T̄
C

(|x − y|+1)d − 2 (|z|+1)d − 2 . (5.43)

Case 2. |y − v| \ |x − v| and |u| [ |u − z|. This implies |y − v| \

|x − y|/2 and |u − z| \ |z|/2. Then

S2(x, z; F) [
C

(|x − y|+1)d − 2 (|z|+1)d − 2

× C
u, v

1
(|u|+1)d − 2 (|u − v|+1)d − 2 (|x − v|+1)d − 2

[ T̄
C

(|x − y|+1)d − 2 (|z|+1)d − 2 . (5.44)

Cases 3 and 4 are when |y − v| [ |x − v|, and either |u| [ |u − z| or
|u| > |u − z|, respectively, and are similar. Adding the contributions in the
four cases yields (5.42).

Next we bound the constituent factors of M̃ (N)(x, z; F) by applying
(1.8) to each line in the diagram. We pick up a factor b from each line cor-
responding to a factor ỹ. Applying (5.42), we get

Ã(0)(u, v; F) [ Cb[S(u, v; F)+S(v, u; F)]

[ CT̄b 5 1
(|u−y|+1)d−2 (|v|+1)d−2+

1
(|u|+1)d−2 (|v−y|+1)d−2

6.

(5.45)

In ref. 13, Section 4.5, it is shown that for i \ 1 the function A (i) satisfies

A (i)(u, v, x, z) [
Cb

(|u − v|+1)d − 2 (|z − u|+1)d − 2 (|x − v|+1)d − 2 . (5.46)

Finally, note that A (end) satisfies

A (end)(u, v, x, z) [
C

(|u − v|+1)d − 2 (|z − u|+1)d − 2 (|x − v|+1)d − 2 . (5.47)
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In the case N=1, the convolution of the right-hand side of (5.45) with
the right-hand side of (5.47) is of the form Cb[S(x, z; F)+S(z, x; F)]. By
(5.42), this satisfies the bound required in (5.40).

More generally, the convolution of the right-hand side of (5.45) with
the right-hand side of either (5.46) or (5.47) is a multiple of S(x, z; F)+
S(z, x; F), and therefore again satisfies a bound of the same form as the
right-hand side of (5.45). Therefore, by induction on the number of factors
appearing in (5.37), we obtain the general case of the lemma. L

Lemma 5.2 immediately yields

M̃ (N)(x, x; F) [ CNbN 1
(|x|+1)d − 2

1
(|x − y|+1)d − 2 , N \ 1. (5.48)

We next argue that the bound in (5.48) can be improved to

M̃ (N)(x, x; F) [
CNb3 K N

(|x|+1)d − 2 (|x − y|+1)d − 2+
Cb2

(|y|+1)d − 2 d1, N[d0, x+dy, x],

N \ 1. (5.49)

For N \ 3 there is no difference, so we restrict attention to N=1 and
N=2.

We start with N=2, which is easier. The diagram for M̃ (2)(x, x; F) is
shown in Fig. 1, where the sum over w ¥ W is replaced by the term w=y.
In general, for any diagram, the power of b is equal to the number of ỹ

lines (recall (1.8)), plus the number of lines with a non-trivial displacement
(recall (5.14)). For N=2, there are at least two factors of b due to the lines
with factors ỹ. Since y ] 0, also at least one of the lines starting from 0 or
y, or the line between the end-points of those two lines must have non-
trivial displacement. This gives the third factor b, as required.

For N=1, the above reasoning yields a single extra factor of b, and
we need to find one more. See Fig. 2 for the diagram M̃ (1)(x, x; F) when
F={0 Y y}, and for the labels of the different lines. As before, at least one

Fig. 2. The diagram representing M̃ (1)(x, x; F) together with the labels of the different lines.
The line ending with a vertical bar represents a ỹ-line.
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of a, b, c has a non-trivial displacement. We will now list a number of dif-
ferent cases. We will call a line non-trivial when it corresponds to a factor
ỹ, or when it corresponds to a factor y(s) with s ] 0.

Case 1. a is non-trivial, and b, c are trivial. Then we may assume
that e, f, g are trivial (otherwise we have at least 3 non-trivial lines giving a
factor b3). The bound we obtain in this case is y(y) y(x − y) ỹ(x − y). Since
y ] 0, we thus obtain three powers of b unless x=y, in which case we end
up with y(y) ỹ(0) dy, x.

Case 2. b is non-trivial, and a, c are trivial. In a similar fashion, we
obtain terms with three powers of b except for the term y(y) ỹ(0) d0, x, since
only the role of 0 and y are interchanged.

Case 3. When c is non-trivial, then we obtain the least powers of b

when a, b, d, e, f, g are all trivial, in which case we end up with
y(y) ỹ(y) d0, x. All other cases receive three factors of b. By (1.8), we obtain
(5.49).

Summing (5.49) over N \ 1 and x ¥ Zd, and applying the last bound of
(5.7) to estimate the convolution, we obtain

C
N \ 1

C
x ¥ Z

d
M̃ (N)(x, x; F) [ Cb3 1

(|y|+1)d − 4+Cb2 1
(|y|+1)d − 2 . (5.50)

When y > L, we can combine the two bounds as

C
N \ 1

C
x ¥ Z

d
M (N)(x, x; F) [ Cb3 1

(|y|+1)d − 4 . (5.51)

Recalling (5.38), this completes the proof of Proposition 5.1(ii). L

5.3. The Backbone

Proof of Theorem 1.3(iv). To prove (1.14) we first show that

P.((0 Y y) p (y Y .))= lim
|x| Q .

Px((0 Y y) p (y Y x)). (5.52)

Denote the events on the left- and right-hand sides by F and Fx, respec-
tively. (We suppress the dependence on y.) Also, define the events
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Fk={0 Y y inside B(k)} p {y Y .}, k \ 1,

Fn, k={0 Y y inside B(k)} p {y Y Zd 0B(n)}, n \ k \ 1,

Fx, k={0 Y y inside B(k)} p {y Y x}, k \ 1.

(5.53)

For ||y||. < n < ||x||. we have Fn, k ‡ Fx, k. Moreover,

(Fn, k 0Fx, k) 5 {0 Y x} … Gn(0, y; x), (5.54)

where Gn(0, y; x) is introduced in (3.12). This implies that for any k and
x ¥ Zd, we have

|Px(Fn, k) − Px(Fx, k)| [ P(y Y Zd 0B(n)). (5.55)

Therefore, since Fn, k is a cylinder event, we have

P.(Fk)= lim
n Q .

P.(Fn, k)= lim
n Q .

lim
|x| Q .

Px(Fn, k)= lim
|x| Q .

Px(Fx, k). (5.56)

Similarly, we have Fx, k … Fx and Fx 0Fx, k … Gk(y, 0; x), which implies

|Px(Fx) − Px(Fx, k)| [ P(0 Y Zd 0B(k))
y(x − y)

y(x)
. (5.57)

Using (5.56), this implies

P.(F)= lim
k Q .

P.(Fk)= lim
k Q .

lim
|x| Q .

Px(Fx, k)= lim
|x| Q .

Px(Fx). (5.58)

The upper bound in (1.14) now follows from the BK inequality and (1.8),
since

lim
|x| Q .

Px((0 Y y) p (y Y x)) [ lim sup
|x| Q .

y(y)
y(x − y)

y(x)
=y(y) [

C
|y|d − 2 . (5.59)

For the lower bound, we argue similarly to part (iii) of Theorem 1.3.
We have

P((0 Y y) p (y Y x)) \ C
v

P((y, v) is occupied and pivotal for 0 0 x)

\ C
v

pcD(v − y) 3y(y) y(x − v)

− C
w, z

y(z) y(w − z) y(y − z) y(v − w) y(x − w)4 . (5.60)
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We now divide by y(x), and take the limit |x| Q .. The contribution of the
first term is

y(y) lim
|x| Q .

ỹ(x − y)
y(x)

=pcy(y). (5.61)

The second term is

C
w, z

y(z) y(w − z) y(y − z) ỹ(y − w)
y(x − w)

y(x)
. (5.62)

We split the summation into two parts according to whether |w − x| [ |x|/2
or \ |x|/2. In the first case, we apply (1.7) to get y(x) \ C(|x|+1)−(d − 2),
and we apply (1.8) to the remaining factors. Then we use that
|x − w| [ |x|/2 and |y| ° |x| imply |w − y| \ |x|/4, and therefore we can
bound (|w − y|+1)−(d − 2) by C(|x|+1)−(d − 2). This gives

C
w, z: |x − w| [ |x|/2

y(z) y(y − z) y(w − z) ỹ(y − w)
y(x − w)

y(x)

[ C
w, z

Cb

(|z|+1)d − 2 (|y − z|+1)d − 2 (|w − z|+1)d − 2 (|x − w|+1)d − 2 . (5.63)

Next we use that either |z| \ |y|/2 or |y − z| \ |y|/2 to bound one of the
first two factors above by C(|y|+1)−(d − 2). This shows that the right-hand
side of (5.63) is bounded above by

Cb(T(y, x)+T(0, x))
(|y|+1)d − 2 . (5.64)

An application of the convolution bound in ref. 13, Proposition 1.7 shows
that when d > 6, we have T(y, x) [ C(|x − y|+1)−(d − 6), and hence both
T(y, x) and T(0, x) go to 0 as x Q ..

In the case |w − x| \ |x|/2, we use that y(w − x)/y(x) is uniformly
bounded, and converges to 1 for every fixed w, z as |x| Q .. Also, the sum
of the remaining part over w, z is bounded by Cb/(|y|+1)d − 6, again by an
application of ref. 13, Proposition 1.7. Therefore, by the dominated con-
vergence theorem and (5.52),

P.((0 Y y) p (y Y .)) \ pcy(y) − (y f g)(y)=(y f [pcI − g])(y), (5.65)

where I(x)=d0, x. The expression on the right-hand side of (5.65) can be
analyzed by the method of Proposition 5.1(i), yielding the lower bound
c |y|−(d − 2). L
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We also expect the conclusions of Theorem 1.3 to hold for the nearest-
neighbor model under conditions alike Theorem 4.1, but we refrain from
stating it.
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